$T_{\rm min}=0.914,\;T_{\rm max}=1.000$

11936 independent reflections 5086 reflections with $I > 2\sigma(I)$

 $R_{\rm int} = 0.074$

(expected range 0.896-0.980) 55457 measured reflections

Acta Crystallographica Section E **Structure Reports** Online

ISSN 1600-5368

1-(Quinolin-2-yl)ethanone

Ray J. Butcher,^a Jerry P. Jasinski,^b* Anil N. Mayekar,^c H. S. Yathiraian^c and B. Naravana^d

^aDepartment of Chemistry, Howard University, 525 College Street NW, Washington, DC 20059, USA, ^bDepartment of Chemistry, Keene State College, 229 Main Street, Keene, NH 03435-2001, USA, ^cDepartment of Studies in Chemistry, University of Mysore, Manasagangotri, Mysore 570 006, India, and ^dDepartment of Studies in Chemistry, Mangalore University, Mangalagangotri 574 199, India Correspondence e-mail: jjasinski@keene.edu

Received 19 July 2007; accepted 22 July 2007

Key indicators: single-crystal X-ray study; T = 203 K; mean σ (C–C) = 0.002 Å; R factor = 0.061; wR factor = 0.188; data-to-parameter ratio = 25.2.

The title compound, C₁₁H₉NO, crystallizes with four independent molecules in the asymmetric unit. The formyl group in each molecule is coplanar with the attached quinoline ring system. The independent molecules exist as two pseudoinversion-related pairs. Each set of these molecules forms sheets parallel to the *ac* plane which are alternately stacked along the b axis. The crystal packing is stabilized by $C-H \cdots O$ intermolecular hydrogen-bonding interactions.

Related literature

For related structures, see: Lynch & McClenaghan (2001); Firley et al. (2005); Yathirajan et al. (2007). For related literature, see: Padwa et al. (1999); Robert & Meunier (1998); Franck et al. (2004).

Experimental

Crystal data C₁₁H₉NO $M_r = 171.19$ Monoclinic, $P2_1/c$ a = 10.3292 (4) Å b = 24.1165 (9) Å c = 15.0923 (5) Å $\beta = 109.782 \ (1)^{\circ}$

V = 3537.7 (2) Å ³
Z = 16
Mo $K\alpha$ radiation
$\mu = 0.08 \text{ mm}^{-1}$
T = 203 K
$0.49 \times 0.41 \times 0.19~\text{mm}$

Data collection

Oxford Diffraction Gemini R diffractometer
Absorption correction: multi-scan
(CrysAlisPro; Oxford
Diffraction, 2007)

Refinement

$R[F^2 > 2\sigma(F^2)] = 0.061$	473 parameters
$wR(F^2) = 0.188$	H-atom parameters constrained
S = 1.01	$\Delta \rho_{\rm max} = 0.26 \ {\rm e} \ {\rm \AA}^{-3}$
11936 reflections	$\Delta \rho_{\rm min} = -0.29 \text{ e } \text{\AA}^{-3}$

Table 1

Hydrogen-bond geometry (Å, °).

$D - H \cdot \cdot \cdot A$	D-H	$H \cdot \cdot \cdot A$	$D \cdots A$	$D - \mathbf{H} \cdot \cdot \cdot A$
$\overline{\begin{array}{c} C3B-H3BA\cdotsO1A^{i}\\ C6D-H6DA\cdotsO1D^{ii} \end{array}}$	0.94	2.48	3.410 (2)	169
	0.94	2.49	3.399 (2)	163

Symmetry codes: (i) -x, $y - \frac{1}{2}$, $-z + \frac{1}{2}$; (ii) x + 1, $-y + \frac{3}{2}$, $z + \frac{1}{2}$.

Data collection: CrysAlisPro (Oxford Diffraction, 2007); cell refinement: CrysAlisPro; data reduction: CrysAlisPro; program(s) used to solve structure: SHELXS97 (Sheldrick, 1997); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: ORTEP-3 (Farrugia, 1997); software used to prepare material for publication: WinGX (Farrugia, 1999).

ANM thanks Sequent Scientific Ltd, Mangalore, India, for the gift of the sample of the title compound. RJB acknowledges the NSF-MRI program (grant No. CHE-0619278) for funds to purchase the diffractometer.

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: CI2423).

References

- Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.
- Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837-838.
- Firley, D., Fraisse, B., Zouhiri, F., Spasojević-de Biré, A., Desmaële, D., d'Angelo, J. & Ghermani, N. E. (2005). Acta Cryst. C61, o154-o157.
- Franck, X., Fournet, A., Prina, E., Mahieuxe, R., Hocquemiller, R. & Fiqadere, B. (2004). Bioorg. Med. Chem. Lett. 14, 3635-3638.
- Lynch, D. E. & McClenaghan, I. (2001). Acta Cryst. E57, 054-055.

Oxford Diffraction (2007). CrysAlisPro. Version 171.31.8. Oxford Diffraction Ltd, Abingdon, Oxfordshire, England.

- Padwa, A., Brodney, M. A., Liu, B., Satake, K. & Wu, T. (1999). J. Org. Chem. 64. 3595-3607.
- Robert, A. & Meunier, B. (1998). Chem. Soc. Rev. 27, 273-279.
- Sheldrick, G. M. (1997). SHELXS97 and SHELXL97. University of Göttingen, Germany.
- Yathirajan, H. S., Sreevidya, T. V., Prathap, M., Narayana, B. & Bolte, M. (2007). Acta Cryst. E63, 0763-0765.

Acta Cryst. (2007). E63, o3603 [doi:10.1107/S160053680703574X]

1-(Quinolin-2-yl)ethanone

R. J. Butcher, J. P. Jasinski, A. N. Mayekar, H. S. Yathirajan and B. Narayana

Comment

Quinolines have been interesting to researchers for many years because a large number of natural products contain these heterocycles. They are found in numerous commercial products, including pharmaceuticals, fragrances and dyes. Quinoline alkaloids such as quinine, chloroquin, mefloquine and amodiaquine are used as efficient drugs for the treatment of malaria. Several quinoline derivatives have been evaluated *in vitro* against several parasites and HTLV-1 transformed cells. Prompted by the varied biological activities, the crystal structure of the title compound is reported.

The asymmetric unit of the title compound contains four independent molecules A, B, C and D; one of the independent molecules, A, is shown in Fig. 1. The N1—C1—C10—C11 torsion angles $[(A) 1.7 (2)^\circ, (B) 1.0 (2)^\circ, (C) -1.0 (2)^\circ$ and (D) 0.2 (2)°] indicate that the acetate group in each independent molecule is coplanar with the attached quinoline ring system.

The independent molecules exist as two pseudo inversion-related pairs (A/C and B/D). In the B/D pair the centroids of the pyridine rings are separated by a distance of 3.7181 (9) Å, indicating π - π stacking interaction. Crystal packing shows each set of these molecules form sheets parallel to the *ac* plane. One of the sheets is shown in Fig. 2. The sheets formed by the A/C and B/D pairs are alternately stacked along the *b* axis. The sheets are cross-linked by C—H…O intermolecular hydrogen-bonding interactions (Fig. 3).

Experimental

The title compound was obtained as a gift sample from Sequent Scientific Ltd, Mangalore, India. The sample was crystallized from ethyl acetate (m.p. 325–327 K).

Refinement

The H atoms were included in the riding model approximation with C—H = 0.94 or 0.97 Å, and with $U_{iso}(H) = 1.18-1.50U_{eq}(C)$. A rotating group model was used for the methyl groups. Owing to the poor diffraction quality of the crystal, the ratio of observed to unique reflections is low (43%).

Figures

Fig. 1. Molecular structure of one of the independent molecules (A) in the title compound. Displacement ellipsoids are drawn at the 50% probability level.

Fig. 2. A view of a sheet formed by two of the four independent molecules in the title compound, showing π - π stacking among inverted quinoline ring systems.

Fig. 3. Packing diagram of the title compound, viewed down the a axis. Dashed lines indicate C—H···O hydrogen bonds.

1-(Quinolin-2-yl)ethanone

Crystal data	
C ₁₁ H ₉ NO	$F_{000} = 1440$
$M_r = 171.19$	$D_{\rm x} = 1.286 {\rm ~Mg} {\rm m}^{-3}$
Monoclinic, $P2_1/c$	Mo $K\alpha$ radiation $\lambda = 0.71073$ Å
Hall symbol: -P 2ybc	Cell parameters from 11806 reflections
a = 10.3292 (4) Å	$\theta = 4.6 - 32.5^{\circ}$
<i>b</i> = 24.1165 (9) Å	$\mu = 0.08 \text{ mm}^{-1}$
c = 15.0923 (5) Å	T = 203 K
$\beta = 109.782 \ (1)^{\circ}$	Prism, colourless
$V = 3537.7 (2) \text{ Å}^3$	$0.49 \times 0.41 \times 0.19 \text{ mm}$
Z = 16	

Data collection

Oxford Diffraction Gemini R diffractometer	$R_{\rm int} = 0.074$
Radiation source: fine-focus sealed tube	$\theta_{\text{max}} = 32.5^{\circ}$
Monochromator: graphite	$\theta_{\min} = 4.6^{\circ}$
T = 203 K	$h = -15 \rightarrow 15$
φ and ω scans	$k = -33 \rightarrow 36$
Absorption correction: multi-scan (CrysAlisPro; Oxford Diffraction, 2007)	<i>l</i> = −22→22
$T_{\min} = 0.914, T_{\max} = 1.000$	1 standard reflections
55457 measured reflections	every 50 reflections
11936 independent reflections	intensity decay: none
5086 reflections with $I > 2\sigma(I)$	

Refinement

Refinement on F^2

Secondary atom site location: difference Fourier map

Least-squares matrix: full	Hydrogen site location: inferred from neighbouring sites
$R[F^2 > 2\sigma(F^2)] = 0.061$	H-atom parameters constrained
$wR(F^2) = 0.188$	$w = 1/[\sigma^2(F_o^2) + (0.0853P)^2]$ where $P = (F_o^2 + 2F_c^2)/3$
<i>S</i> = 1.01	$(\Delta/\sigma)_{\text{max}} = 0.001$
11936 reflections	$\Delta \rho_{max} = 0.26 \text{ e } \text{\AA}^{-3}$
473 parameters	$\Delta \rho_{\rm min} = -0.29 \text{ e } \text{\AA}^{-3}$
Primary atom site location: structure-invariant direct methods	Extinction correction: none

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F^2 against ALL reflections. The weighted *R*-factor *wR* and goodness of fit S are based on F^2 , conventional *R*-factors *R* are based on F, with F set to zero for negative F^2 . The threshold expression of $F^2 > 2 \text{sigma}(F^2)$ is used only for calculating *R*-factors(gt) *etc.* and is not relevant to the choice of reflections for refinement. *R*-factors based on F^2 are statistically about twice as large as those based on F, and R– factors based on ALL data will be even larger.

	x	У	Z	$U_{\rm iso}*/U_{\rm eq}$
O1A	-0.07703 (15)	1.04971 (5)	0.28167 (9)	0.0632 (4)
O1B	0.61623 (16)	0.69661 (6)	0.42156 (10)	0.0748 (4)
O1C	0.56572 (15)	0.94486 (6)	0.22088 (10)	0.0671 (4)
O1D	-0.01689 (13)	0.78006 (5)	-0.12826 (9)	0.0606 (4)
N1A	0.09636 (13)	0.98762 (5)	0.14437 (8)	0.0355 (3)
N1B	0.34651 (13)	0.78162 (5)	0.28716 (8)	0.0373 (3)
N1C	0.40511 (13)	1.02002 (5)	0.35393 (8)	0.0360 (3)
N1D	0.27293 (13)	0.70810 (5)	0.01421 (8)	0.0357 (3)
C1A	0.05158 (15)	1.02859 (6)	0.18400 (10)	0.0353 (4)
C2A	0.07495 (16)	1.08525 (7)	0.17001 (11)	0.0406 (4)
H2AA	0.0408	1.1131	0.1998	0.049*
C3A	0.14743 (16)	1.09886 (7)	0.11289 (11)	0.0401 (4)
H3AA	0.1639	1.1363	0.1028	0.048*
C4A	0.19768 (15)	1.05654 (6)	0.06896 (10)	0.0334 (3)
C5A	0.27301 (16)	1.06655 (7)	0.00820 (10)	0.0404 (4)
H5AA	0.2923	1.1033	-0.0042	0.048*
C6A	0.31811 (18)	1.02406 (7)	-0.03262 (11)	0.0454 (4)
H6AA	0.3688	1.0314	-0.0726	0.054*
C7A	0.28899 (18)	0.96909 (7)	-0.01509 (11)	0.0477 (4)
H7AA	0.3201	0.9398	-0.0438	0.057*
C8A	0.21618 (17)	0.95771 (7)	0.04305 (11)	0.0425 (4)
H8AA	0.1976	0.9207	0.0542	0.051*

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (A^2)

C9A	0.16879 (15)	1.00091 (6)	0.08646 (9)	0.0331 (3)
C10A	-0.03023 (17)	1.01341 (7)	0.24530 (11)	0.0410 (4)
C11A	-0.05311 (19)	0.95347 (7)	0.26026 (12)	0.0482 (4)
H11A	-0.1211	0.9500	0.2912	0.072*
H11B	0.0327	0.9368	0.2994	0.072*
H11C	-0.0858	0.9346	0.1999	0.072*
C1B	0.40895 (18)	0.73489 (7)	0.32194 (10)	0.0404 (4)
C2B	0.3457 (2)	0.68248 (7)	0.29934 (13)	0.0538 (5)
H2BA	0.3941	0.6500	0.3253	0.065*
C3B	0.2143 (2)	0.67967 (8)	0.23973 (14)	0.0576 (5)
H3BA	0.1708	0.6450	0.2245	0.069*
C4B	0.14213 (19)	0.72846 (7)	0.20026 (11)	0.0457 (4)
C5B	0.0050(2)	0.72994 (10)	0.13782 (14)	0.0641 (6)
H5BA	-0.0446	0.6967	0.1206	0.077*
C6B	-0.0568 (2)	0.77907 (11)	0.10202 (14)	0.0671 (6)
H6BA	-0.1480	0.7793	0.0601	0.080*
C7B	0.01464 (19)	0.82881 (9)	0.12728 (12)	0.0579 (5)
H7BA	-0.0285	0.8624	0.1022	0.069*
C8B	0.14661 (18)	0.82904 (7)	0.18805 (11)	0.0467 (4)
H8BA	0.1936	0.8629	0.2047	0.056*
C9B	0.21395 (17)	0.77913 (6)	0.22641 (10)	0.0369 (4)
C10B	0.55432 (19)	0.73872 (8)	0.38828 (11)	0.0480 (4)
C11B	0.6186 (2)	0.79410 (9)	0.41227 (14)	0.0618 (5)
H11D	0.7146	0.7898	0.4508	0.093*
H11E	0.5711	0.8150	0.4469	0.093*
H11F	0.6123	0.8138	0 3549	0.093*
CIC	0.44322(15)	0.97599 (6)	0.31720 (10)	0.0346(3)
C2C	0.11322(13) 0.41114(17)	0.92106 (7)	0.33494(11)	0.0310(3) 0.0425(4)
H2CA	0.4389	0.8910	0 3059	0.051*
C3C	0.34016 (17)	0.91224 (7)	0.39416 (11)	0.031 0.0431 (4)
нзса	0.3187	0.8759	0.4070	0.052*
	0.29849 (15)	0.95769 (7)	0.43651 (10)	0.032 0.0370 (4)
C5C	0.23649(13) 0.22541(17)	0.95705(7)	0.49016 (11)	0.0370(4) 0.0473(4)
насла	0.22341 (17)	0.95245 (8)	0.5158	0.0473(4)
CéC	0.2040	0.9109	0.5158 0.53622(12)	0.057 0.0534(5)
	0.1252	0.0024	0.55022 (12)	0.0554 (5)
C7C	0.1332 0.21778 (10)	0.9934	0.5770	0.004
	0.21778 (19)	1.03100 (9)	0.51290 (15)	0.0508 (5)
П/CA C ^P C	0.1895	1.0823	0.3388	0.008°
	0.29049 (18)	1.03/91 (7)	0.43319 (12)	0.0487 (4)
HoCA COC	0.3127	1.0938	0.4387	0.038
C9C	0.53220 (15)	1.011/0(7)	0.41326 (10)	0.0359(4)
	0.52527 (17)	0.98490 (7)	0.25350 (11)	0.0426 (4)
	0.55//3(19)	1.042/6 (/)	0.23343 (12)	0.0482 (4)
ппо	0.0110	1.0421	0.1914	0.072*
HIIH	0.6105	1.0609	0.2919	0.072*
HIII	0.4728	1.0630	0.2039	0.072*
CID	0.19891 (16)	0./5186 (6)	-0.02455 (9)	0.0345 (3)
C2D	0.24719 (18)	0.80692 (7)	-0.00719 (11)	0.0426 (4)
H2DA	0.1905	0.8368	-0.0366	0.051*

C3D	0.37661 (19)	0.81588 (7)	0.05259 (11)	0.0478 (4)
H3DA	0.4104	0.8523	0.0652	0.057*
C4D	0.46046 (17)	0.77089 (7)	0.09584 (10)	0.0395 (4)
C5D	0.59782 (19)	0.77644 (9)	0.15884 (12)	0.0535 (5)
H5DA	0.6376	0.8118	0.1732	0.064*
C6D	0.67187 (19)	0.73061 (9)	0.19843 (12)	0.0566 (5)
H6DA	0.7625	0.7347	0.2402	0.068*
C7D	0.61497 (19)	0.67772 (9)	0.17777 (12)	0.0551 (5)
H7DA	0.6676	0.6466	0.2061	0.066*
C8D	0.48436 (17)	0.67053 (7)	0.11711 (11)	0.0442 (4)
H8DA	0.4476	0.6346	0.1036	0.053*
C9D	0.40373 (16)	0.71704 (6)	0.07426 (10)	0.0365 (4)
C10D	0.05534 (17)	0.74153 (7)	-0.09018 (10)	0.0403 (4)
C11D	0.00576 (19)	0.68309 (8)	-0.10771 (14)	0.0571 (5)
H11J	-0.0888	0.6828	-0.1502	0.086*
H11K	0.0107	0.6659	-0.0486	0.086*
H11L	0.0631	0.6627	-0.1357	0.086*

Atomic displacement parameters (\AA^2)

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
O1A	0.0817 (10)	0.0495 (8)	0.0786 (9)	0.0120 (7)	0.0535 (8)	0.0025 (6)
O1B	0.0790 (10)	0.0721 (10)	0.0684 (9)	0.0381 (8)	0.0186 (8)	0.0202 (7)
01C	0.0861 (10)	0.0576 (9)	0.0776 (9)	-0.0007 (7)	0.0538 (8)	-0.0101 (7)
O1D	0.0498 (8)	0.0568 (8)	0.0599 (8)	0.0169 (6)	-0.0014 (6)	-0.0007 (6)
N1A	0.0360 (7)	0.0342 (7)	0.0349 (6)	0.0040 (6)	0.0100 (6)	0.0010 (5)
N1B	0.0383 (8)	0.0360 (7)	0.0369 (7)	0.0031 (6)	0.0117 (6)	-0.0001 (5)
N1C	0.0356 (7)	0.0375 (7)	0.0352 (6)	-0.0034 (6)	0.0122 (6)	0.0005 (5)
N1D	0.0356 (7)	0.0386 (7)	0.0325 (6)	0.0060 (6)	0.0112 (6)	-0.0005 (5)
C1A	0.0325 (8)	0.0378 (9)	0.0332 (7)	0.0025 (7)	0.0080 (7)	-0.0007 (6)
C2A	0.0434 (9)	0.0357 (9)	0.0417 (8)	0.0046 (7)	0.0133 (8)	-0.0058 (7)
C3A	0.0424 (9)	0.0312 (8)	0.0445 (9)	-0.0023 (7)	0.0119 (8)	-0.0025 (7)
C4A	0.0289 (8)	0.0355 (8)	0.0316 (7)	-0.0007 (6)	0.0045 (6)	0.0000 (6)
C5A	0.0353 (9)	0.0428 (9)	0.0403 (8)	-0.0051 (7)	0.0092 (7)	0.0037 (7)
C6A	0.0427 (10)	0.0561 (11)	0.0388 (8)	0.0042 (8)	0.0157 (8)	0.0058 (8)
C7A	0.0542 (11)	0.0474 (10)	0.0461 (9)	0.0133 (9)	0.0229 (9)	-0.0018 (8)
C8A	0.0485 (10)	0.0355 (9)	0.0459 (9)	0.0075 (7)	0.0190 (8)	-0.0002 (7)
C9A	0.0322 (8)	0.0350 (8)	0.0284 (7)	0.0034 (6)	0.0057 (6)	0.0015 (6)
C10A	0.0401 (9)	0.0430 (10)	0.0406 (8)	0.0069 (7)	0.0144 (7)	0.0033 (7)
C11A	0.0561 (11)	0.0457 (10)	0.0482 (9)	0.0046 (8)	0.0248 (9)	0.0074 (8)
C1B	0.0524 (10)	0.0382 (9)	0.0368 (8)	0.0079 (8)	0.0232 (8)	0.0019 (7)
C2B	0.0767 (14)	0.0375 (10)	0.0551 (10)	0.0043 (9)	0.0326 (11)	0.0004 (8)
C3B	0.0812 (15)	0.0402 (10)	0.0643 (11)	-0.0196 (10)	0.0414 (11)	-0.0133 (9)
C4B	0.0524 (11)	0.0506 (11)	0.0424 (9)	-0.0134 (8)	0.0269 (9)	-0.0115 (8)
C5B	0.0569 (13)	0.0849 (16)	0.0556 (11)	-0.0321 (12)	0.0258 (11)	-0.0266 (11)
C6B	0.0388 (11)	0.1102 (19)	0.0487 (11)	-0.0032 (12)	0.0102 (9)	-0.0180 (11)
C7B	0.0441 (11)	0.0798 (15)	0.0437 (9)	0.0137 (10)	0.0069 (9)	-0.0084 (9)
C8B	0.0430 (10)	0.0488 (10)	0.0447 (9)	0.0045 (8)	0.0100 (8)	-0.0019 (8)

C9B	0.0392 (9)	0.0420 (9)	0.0332 (7)	-0.0016 (7)	0.0170 (7)	-0.0049 (6)
C10B	0.0516 (11)	0.0562 (11)	0.0388 (8)	0.0187 (9)	0.0186 (8)	0.0082 (8)
C11B	0.0444 (11)	0.0722 (14)	0.0578 (11)	0.0055 (10)	0.0028 (9)	0.0006 (10)
C1C	0.0301 (8)	0.0373 (9)	0.0345 (7)	-0.0012 (6)	0.0084 (7)	0.0014 (6)
C2C	0.0456 (10)	0.0379 (9)	0.0428 (8)	-0.0018 (7)	0.0133 (8)	-0.0004 (7)
C3C	0.0436 (9)	0.0360 (9)	0.0458 (9)	-0.0073 (7)	0.0100 (8)	0.0022 (7)
C4C	0.0290 (8)	0.0460 (9)	0.0328 (8)	-0.0061 (7)	0.0061 (7)	0.0033 (7)
C5C	0.0406 (9)	0.0557 (11)	0.0439 (9)	-0.0111 (8)	0.0120 (8)	0.0040 (8)
C6C	0.0397 (10)	0.0794 (14)	0.0435 (9)	-0.0074 (9)	0.0172 (8)	-0.0014 (9)
C7C	0.0541 (11)	0.0648 (13)	0.0555 (11)	0.0047 (10)	0.0237 (10)	-0.0120 (9)
C8C	0.0542 (11)	0.0469 (10)	0.0495 (9)	-0.0042 (8)	0.0235 (9)	-0.0036 (8)
C9C	0.0284 (8)	0.0426 (9)	0.0322 (7)	-0.0030(7)	0.0043 (7)	0.0003 (6)
C10C	0.0420 (9)	0.0483 (10)	0.0385 (8)	-0.0011 (8)	0.0149 (8)	-0.0025 (7)
C11C	0.0487 (10)	0.0552 (11)	0.0438 (9)	-0.0046 (9)	0.0196 (8)	0.0072 (8)
C1D	0.0370 (8)	0.0398 (9)	0.0282 (7)	0.0071 (7)	0.0129 (7)	-0.0014 (6)
C2D	0.0503 (10)	0.0360 (9)	0.0406 (8)	0.0086 (8)	0.0142 (8)	-0.0001 (7)
C3D	0.0532 (11)	0.0402 (9)	0.0477 (9)	-0.0040 (8)	0.0138 (9)	-0.0057 (7)
C4D	0.0378 (9)	0.0488 (10)	0.0338 (8)	0.0004 (7)	0.0144 (7)	-0.0032 (7)
C5D	0.0424 (10)	0.0699 (13)	0.0458 (10)	-0.0072 (9)	0.0116 (9)	-0.0077 (9)
C6D	0.0329 (9)	0.0939 (16)	0.0384 (9)	0.0066 (10)	0.0062 (8)	-0.0008 (10)
C7D	0.0491 (11)	0.0734 (14)	0.0414 (9)	0.0198 (10)	0.0133 (9)	0.0068 (9)
C8D	0.0428 (10)	0.0514 (10)	0.0382 (8)	0.0123 (8)	0.0135 (8)	0.0036 (7)
C9D	0.0345 (8)	0.0452 (9)	0.0318 (7)	0.0062 (7)	0.0140 (7)	0.0011 (6)
C10D	0.0385 (9)	0.0466 (10)	0.0351 (8)	0.0067 (8)	0.0116 (7)	-0.0041 (7)
C11D	0.0453 (11)	0.0532 (11)	0.0646 (11)	-0.0002 (9)	0.0077 (9)	-0.0086 (9)

Geometric parameters (Å, °)

O1A—C10A	1.2170 (19)	C8B—C9B	1.412 (2)
O1B—C10B	1.214 (2)	C8B—H8BA	0.94
O1C—C10C	1.220 (2)	C10B—C11B	1.481 (3)
O1D-C10D	1.2084 (18)	C11B—H11D	0.97
N1A—C1A	1.3173 (19)	C11B—H11E	0.97
N1A—C9A	1.3671 (19)	C11B—H11F	0.97
N1B—C1B	1.3162 (19)	C1C—C2C	1.413 (2)
N1B—C9B	1.367 (2)	C1C—C10C	1.497 (2)
N1C—C1C	1.318 (2)	C2C—C3C	1.351 (2)
N1C—C9C	1.3653 (19)	C2C—H2CA	0.94
N1D—C1D	1.3183 (19)	C3C—C4C	1.408 (2)
N1D-C9D	1.3654 (19)	СЗС—НЗСА	0.94
C1A—C2A	1.416 (2)	C4C—C5C	1.401 (2)
C1A—C10A	1.494 (2)	C4C—C9C	1.423 (2)
C2A—C3A	1.360 (2)	C5C—C6C	1.354 (3)
C2A—H2AA	0.94	C5C—H5CA	0.94
C3A—C4A	1.408 (2)	C6C—C7C	1.405 (3)
СЗА—НЗАА	0.94	С6С—Н6СА	0.94
C4A—C5A	1.410 (2)	C7C—C8C	1.365 (2)
C4A—C9A	1.419 (2)	C7C—H7CA	0.94
C5A—C6A	1.357 (2)	C8C—C9C	1.403 (2)

C5A—H5AA	0.94	C8C—H8CA	0.94
С6А—С7А	1.404 (2)	C10C—C11C	1.490 (2)
С6А—Н6АА	0.94	C11C—H11G	0.97
C7A—C8A	1.363 (2)	С11С—Н11Н	0.97
С7А—Н7АА	0.94	C11C—H11I	0.97
C8A—C9A	1.404 (2)	C1D—C2D	1.411 (2)
C8A—H8AA	0.94	C1DC10D	1.499 (2)
C10A—C11A	1.494 (2)	C2D—C3D	1.353 (2)
C11A—H11A	0.97	C2D—H2DA	0.94
C11A—H11B	0.97	C3D—C4D	1.404 (2)
C11A—H11C	0.97	C3D—H3DA	0.94
C1B—C2B	1.411 (2)	C4DC9D	1.417 (2)
C1B—C10B	1.499 (2)	C4D—C5D	1.422 (2)
C2B—C3B	1.352 (3)	C5D—C6D	1.362 (3)
C2B—H2BA	0.94	C5D—H5DA	0.94
C3B—C4B	1.413 (3)	C6D—C7D	1.395 (3)
СЗВ—НЗВА	0.94	C6D—H6DA	0.94
C4B—C5B	1.411 (3)	C7D—C8D	1.361 (2)
C4B—C9B	1.415 (2)	C7D—H7DA	0.94
C5B—C6B	1.367 (3)	C8D—C9D	1.416 (2)
C5B—H5BA	0.94	C8D—H8DA	0.94
C6B—C7B	1.392 (3)	C10D—C11D	1.492 (2)
C6B—H6BA	0.94	C11D—H11J	0.97
C7B—C8B	1.361 (2)	C11D—H11K	0.97
С7В—Н7ВА	0.94	C11D—H11L	0.97
C1A—N1A—C9A	117.82 (13)	H11D—C11B—H11F	109.5
C1B—N1B—C9B	118.31 (14)	H11E—C11B—H11F	109.5
C1C—N1C—C9C	117.83 (13)	N1C—C1C—C2C	123.57 (15)
C1D—N1D—C9D	117.59 (14)	N1C-C1C-C10C	117.99 (14)
N1A—C1A—C2A	123.53 (15)	C2C—C1C—C10C	118.44 (15)
N1A—C1A—C10A	117.15 (14)	C3C—C2C—C1C	119.18 (16)
C2A—C1A—C10A	119.31 (14)	C3C—C2C—H2CA	120.4
C3A—C2A—C1A	119.06 (15)	C1C—C2C—H2CA	120.4
СЗА—С2А—Н2АА	120.5	C2C—C3C—C4C	119.70 (15)
C1A—C2A—H2AA	120.5	С2С—С3С—Н3СА	120.1
C2A—C3A—C4A	119.57 (15)	С4С—С3С—Н3СА	120.1
С2А—С3А—НЗАА	120.2	C5C—C4C—C3C	123.61 (15)
С4А—С3А—НЗАА	120.2	C5C—C4C—C9C	118.82 (15)
C3A—C4A—C5A	123.68 (14)	C3C—C4C—C9C	117.57 (14)
C3A—C4A—C9A	117.61 (14)	C6C—C5C—C4C	121.14 (17)
C5A—C4A—C9A	118.70 (14)	C6C—C5C—H5CA	119.4
C6A—C5A—C4A	121.06 (15)	C4C—C5C—H5CA	119.4
С6А—С5А—Н5АА	119.5	C5C—C6C—C7C	120.09 (18)
С4А—С5А—Н5АА	119.5	С5С—С6С—Н6СА	120.0
C5A—C6A—C7A	119.94 (16)	С7С—С6С—Н6СА	120.0
С5А—С6А—Н6АА	120.0	C8C—C7C—C6C	120.56 (18)
С7А—С6А—Н6АА			
	120.0	C8C—C7C—H7CA	119.7
C8A—C7A—C6A	120.0 120.76 (16)	С8С—С7С—Н7СА С6С—С7С—Н7СА	119.7 119.7
C8A—C7A—C6A C8A—C7A—H7AA	120.0 120.76 (16) 119.6	C8C—C7C—H7CA C6C—C7C—H7CA C7C—C8C—C9C	119.7 119.7 120.39 (17)

С6А—С7А—Н7АА	119.6	C7C—C8C—H8CA	119.8
С7А—С8А—С9А	120.43 (16)	C9C—C8C—H8CA	119.8
С7А—С8А—Н8АА	119.8	N1C—C9C—C8C	118.89 (15)
С9А—С8А—Н8АА	119.8	N1C—C9C—C4C	122.12 (14)
N1A—C9A—C8A	118.49 (14)	C8C—C9C—C4C	118.99 (15)
N1A—C9A—C4A	122.41 (13)	O1C—C10C—C11C	121.86 (16)
C8A—C9A—C4A	119.10 (14)	O1C—C10C—C1C	119.43 (16)
O1A—C10A—C11A	121.36 (16)	C11C—C10C—C1C	118.70 (15)
O1A—C10A—C1A	119.82 (15)	C10C—C11C—H11G	109.5
C11A—C10A—C1A	118.83 (14)	C10C—C11C—H11H	109.5
C10A—C11A—H11A	109.5	H11G—C11C—H11H	109.5
C10A—C11A—H11B	109.5	C10C—C11C—H11I	109.5
H11A—C11A—H11B	109.5	H11G—C11C—H11I	109.5
C10A—C11A—H11C	109.5	H11H—C11C—H11I	109.5
H11A—C11A—H11C	109.5	N1D—C1D—C2D	123.74 (14)
H11B—C11A—H11C	109.5	N1D-C1D-C10D	117.10 (14)
N1B—C1B—C2B	123.13 (17)	C2D-C1D-C10D	119.16 (14)
N1B-C1B-C10B	117.29 (15)	C3D—C2D—C1D	118.76 (15)
C2B-C1B-C10B	119.58 (16)	C3D—C2D—H2DA	120.6
C3B—C2B—C1B	118.95 (17)	C1D—C2D—H2DA	120.6
C3B—C2B—H2BA	120.5	C2D—C3D—C4D	120.10 (16)
C1B—C2B—H2BA	120.5	C2D—C3D—H3DA	120.0
C2B—C3B—C4B	120.43 (17)	C4D—C3D—H3DA	120.0
С2В—С3В—Н3ВА	119.8	C3D—C4D—C9D	117.36 (15)
C4B—C3B—H3BA	119.8	C3D—C4D—C5D	123.86 (16)
C5B—C4B—C3B	124.74 (18)	C9D—C4D—C5D	118.78 (16)
C5B—C4B—C9B	118.52 (18)	C6D-C5D-C4D	120.14 (18)
C3B—C4B—C9B	116.73 (17)	C6D—C5D—H5DA	119.9
C6B—C5B—C4B	120.96 (19)	C4D—C5D—H5DA	119.9
C6B—C5B—H5BA	119.5	C5D—C6D—C7D	120.83 (17)
C4B—C5B—H5BA	119.5	C5D—C6D—H6DA	119.6
C5B—C6B—C7B	120.34 (19)	C7D—C6D—H6DA	119.6
C5B—C6B—H6BA	119.8	C8D-C7D-C6D	120.91 (17)
C7B—C6B—H6BA	119.8	C8D—C7D—H7DA	119.5
C8B—C7B—C6B	120.33 (19)	C6D—C7D—H7DA	119.5
C8B—C7B—H7BA	119.8	C7D—C8D—C9D	120.14 (17)
C6B—C7B—H7BA	119.8	C7D—C8D—H8DA	119.9
C7B—C8B—C9B	120.97 (17)	C9D—C8D—H8DA	119.9
C7B—C8B—H8BA	119.5	N1D—C9D—C8D	118.36 (15)
C9B—C8B—H8BA	119.5	N1D-C9D-C4D	122.46 (14)
N1B—C9B—C8B	118.68 (14)	C8D—C9D—C4D	119.18 (15)
N1B—C9B—C4B	122.45 (15)	01D-C10D-C11D	121.49 (15)
C8B—C9B—C4B	118.86 (16)	01D—C10D—C1D	119.99 (15)
O1B—C10B—C11B	121.54 (18)	C11D-C10D-C1D	118.52 (14)
O1B—C10B—C1B	119.53 (18)	C10D—C11D—H11J	109.5
C11B—C10B—C1B	118.93 (15)	C10D—C11D—H11K	109.5
C10B—C11B—H11D	109.5	H11J—C11D—H11K	109.5
C10B—C11B—H11E	109.5	C10D—C11D—H11L	109.5
H11D—C11B—H11E	109.5	H11J—C11D—H11L	109.5

C10B—C11B—H11F	109.5	H11K—C11D—H11L	109.5
C9A—N1A—C1A—C2A	-0.2 (2)	C9C—N1C—C1C—C2C	0.9 (2)
C9A—N1A—C1A—C10A	178.60 (12)	C9C—N1C—C1C—C10C	-178.92 (13)
N1A—C1A—C2A—C3A	-0.1 (2)	N1C—C1C—C2C—C3C	-1.5 (2)
C10A—C1A—C2A—C3A	-178.89 (14)	C10C—C1C—C2C—C3C	178.34 (14)
C1A—C2A—C3A—C4A	0.0 (2)	C1C—C2C—C3C—C4C	0.5 (2)
C2A—C3A—C4A—C5A	179.59 (14)	C2C—C3C—C4C—C5C	-179.58 (15)
C2A—C3A—C4A—C9A	0.4 (2)	C2C—C3C—C4C—C9C	0.9 (2)
C3A—C4A—C5A—C6A	-179.58 (15)	C3C—C4C—C5C—C6C	-178.47 (15)
C9A—C4A—C5A—C6A	-0.4 (2)	C9C—C4C—C5C—C6C	1.1 (2)
C4A—C5A—C6A—C7A	0.5 (2)	C4C—C5C—C6C—C7C	-0.8 (3)
C5A—C6A—C7A—C8A	-0.3 (3)	C5C—C6C—C7C—C8C	-0.2 (3)
C6A—C7A—C8A—C9A	0.1 (2)	C6C—C7C—C8C—C9C	0.8 (3)
C1A—N1A—C9A—C8A	-179.46 (13)	C1C—N1C—C9C—C8C	-179.97 (14)
C1A—N1A—C9A—C4A	0.6 (2)	C1C—N1C—C9C—C4C	0.6 (2)
C7A—C8A—C9A—N1A	-179.89 (14)	C7C—C8C—C9C—N1C	-179.86 (15)
C7A—C8A—C9A—C4A	0.0 (2)	C7C—C8C—C9C—C4C	-0.4 (2)
C3A—C4A—C9A—N1A	-0.7 (2)	C5C—C4C—C9C—N1C	178.95 (13)
C5A—C4A—C9A—N1A	-179.96 (13)	C3C—C4C—C9C—N1C	-1.5 (2)
C3A—C4A—C9A—C8A	179.38 (13)	C5C—C4C—C9C—C8C	-0.5 (2)
C5A—C4A—C9A—C8A	0.1 (2)	C3C—C4C—C9C—C8C	179.09 (14)
N1A—C1A—C10A—O1A	-178.13 (15)	N1C-C1C-C10C-01C	177.67 (15)
C2A—C1A—C10A—O1A	0.8 (2)	C2C-C1C-C10C-01C	-2.2 (2)
N1A—C1A—C10A—C11A	1.7 (2)	N1C-C1C-C10C-C11C	-1.0 (2)
C2A—C1A—C10A—C11A	-179.44 (14)	C2C-C1C-C10C-C11C	179.15 (14)
C9B—N1B—C1B—C2B	0.2 (2)	C9D—N1D—C1D—C2D	-0.2 (2)
C9B—N1B—C1B—C10B	179.92 (13)	C9D—N1D—C1D—C10D	-179.85 (12)
N1B—C1B—C2B—C3B	-0.5 (3)	N1D-C1D-C2D-C3D	-0.1 (2)
C10B—C1B—C2B—C3B	179.72 (15)	C10D—C1D—C2D—C3D	179.60 (14)
C1B—C2B—C3B—C4B	0.5 (3)	C1DC2DC3DC4D	0.2 (2)
C2B—C3B—C4B—C5B	-179.74 (17)	C2DC3DC4DC9D	-0.1 (2)
C2B—C3B—C4B—C9B	-0.1 (3)	C2D—C3D—C4D—C5D	179.46 (16)
C3B—C4B—C5B—C6B	-179.29 (18)	C3DC4DC5DC6D	179.45 (16)
C9B—C4B—C5B—C6B	1.0 (3)	C9D-C4D-C5D-C6D	-1.0 (2)
C4B—C5B—C6B—C7B	-0.5 (3)	C4DC5DC6DC7D	0.3 (3)
C5B—C6B—C7B—C8B	-0.2 (3)	C5D-C6D-C7D-C8D	0.4 (3)
C6B—C7B—C8B—C9B	0.2 (3)	C6D-C7D-C8D-C9D	-0.3 (3)
C1B—N1B—C9B—C8B	-179.41 (14)	C1D—N1D—C9D—C8D	179.52 (13)
C1B—N1B—C9B—C4B	0.3 (2)	C1D—N1D—C9D—C4D	0.3 (2)
C7B-C8B-C9B-N1B	-179.98 (15)	C7D—C8D—C9D—N1D	-179.66 (14)
C7B—C8B—C9B—C4B	0.3 (2)	C7D-C8D-C9D-C4D	-0.4 (2)
C5B-C4B-C9B-N1B	179.38 (14)	C3D—C4D—C9D—N1D	-0.1 (2)
C3B—C4B—C9B—N1B	-0.3 (2)	C5D—C4D—C9D—N1D	-179.74 (14)
C5B—C4B—C9B—C8B	-0.9 (2)	C3D-C4D-C9D-C8D	-179.36 (14)
C3B—C4B—C9B—C8B	179.36 (15)	C5D-C4D-C9D-C8D	1.0 (2)
N1B-C1B-C10B-O1B	-179.49 (15)	N1D-C1D-C10D-01D	-179.47 (14)
C2B-C1B-C10B-O1B	0.3 (2)	C2D-C1D-C10D-O1D	0.8 (2)
N1B-C1B-C10B-C11B	1.0 (2)	N1D-C1D-C10D-C11D	-0.2 (2)
C2B-C1B-C10B-C11B	-179.21 (16)	C2D-C1D-C10D-C11D	-179.92 (15)

Hydrogen-bond geometry (Å, °)

D—H···A	<i>D</i> —Н	$H \cdots A$	$D \cdots A$	D—H··· A
C3B—H3BA···O1A ⁱ	0.94	2.48	3.410 (2)	169
C6D—H6DA…O1D ⁱⁱ	0.94	2.49	3.399 (2)	163
Symmetry codes: (i) $-x$, $y-1/2$, $-z+1/2$; (ii) $x+1$, $-y+1/2$; $-z+1/2$; (ii) $x+1$, $-y+1/2$; $-z+1/2$; $-z+1/$	-3/2, <i>z</i> +1/2.			

Fig. 1

